Gpax: Genetic Parabolic Adaptive Crossover Operator
نویسندگان
چکیده
In this paper we propose a new crossover operator for real coded evolutionary algorithms that is based on a parabolic probability density function. This density function depends on two real parameters α and β which have the capacity to achieve exploration and exploitation dynamically during the evolutionary process in relation to the best individuals. In other words, the proposed crossover operator is able to handle the generational diversity of the population in such a way that it can either generate additional population diversity, therefore allowing exploration to take effect, or use the diversity previously generated to exploit the better solutions. In order to test the performance of this crossover, we have used a set of test functions and have made a comparative study of the proposed crossover against other classic crossover operators. The analysis of the results allows us to affirm that the proposed operator displays a very suitable behavior, although, it should be noted that it offers a better behavior applied to complex search spaces than simple ones.
منابع مشابه
A New Adaptive Crossover Operator for the Preservation of Useful Schemata
In genetic algorithms, commonly used crossover operators such as one-point, two-point and uniform crossover operator are likely to destroy the information obtained in the evolution because of their random choices of crossover points. To overcome this defect, a new adaptive crossover operator based on the Rough Set theory is proposed in this paper. By using this specialized crossover operator, u...
متن کاملAN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM
Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...
متن کاملGenetic algorithm for Echo cancelling
In this paper, echo cancellation is done using genetic algorithm (GA). The genetic algorithm is implemented by two kinds of crossovers; heuristic and microbial. A new procedure is proposed to estimate the coefficients of adaptive filters used in echo cancellation with combination of the GA with Least-Mean-Square (LMS) method. The results are compared for various values of LMS step size and diff...
متن کاملMulti-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator
Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...
متن کاملGenetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 18 شماره
صفحات -
تاریخ انتشار 2012